- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000200001000000
- More
- Availability
-
03
- Author / Contributor
- Filter by Author / Creator
-
-
Battle, Leilani (3)
-
Dong, Ziwei (3)
-
Patil, Ameya (3)
-
Shoda, Yuichi (3)
-
Wall, Emily (3)
-
Barrett, Teanna (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Data science pipelines inform and influence many daily decisions, from what we buy to who we work for and even where we live. When designed incorrectly, these pipelines can easily propagate social inequity and harm. Traditional solutions are technical in nature; e.g., mitigating biased algorithms. In this vision paper, we introduce a novel lens for promoting responsible data science using theories of behavior change that emphasize not only technical solutions but also the behavioral responsibility of practitioners. By integrating behavior change theories from cognitive psychology with data science workflow knowledge and ethics guidelines, we present a new perspective on responsible data science. We present example data science interventions in machine learning and visual data analysis, contextualized in behavior change theories that could be implemented to interrupt and redirect potentially suboptimal or negligent practices while reinforcing ethically conscious behaviors. We conclude with a call to action to our community to explore this new research area of behavior change interventions for responsible data science.more » « lessFree, publicly-accessible full text available May 2, 2026
-
Dong, Ziwei; Patil, Ameya; Shoda, Yuichi; Battle, Leilani; Wall, Emily (, 2025 Conference on Computer Supported Cooperative Work)Free, publicly-accessible full text available March 20, 2026
-
Dong, Ziwei; Barrett, Teanna; Patil, Ameya; Shoda, Yuichi; Battle, Leilani; Wall, Emily (, IUI '25: Proceedings of the 30th International Conference on Intelligent User Interfaces)Free, publicly-accessible full text available March 24, 2026
An official website of the United States government
